Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Front Mol Neurosci ; 17: 1222935, 2024.
Article En | MEDLINE | ID: mdl-38495551

This study reports on biallelic homozygous and monoallelic de novo variants in SLITRK3 in three unrelated families presenting with epileptic encephalopathy associated with a broad neurological involvement characterized by microcephaly, intellectual disability, seizures, and global developmental delay. SLITRK3 encodes for a transmembrane protein that is involved in controlling neurite outgrowth and inhibitory synapse development and that has an important role in brain function and neurological diseases. Using primary cultures of hippocampal neurons carrying patients' SLITRK3 variants and in combination with electrophysiology, we demonstrate that recessive variants are loss-of-function alleles. Immunostaining experiments in HEK-293 cells showed that human variants C566R and E606X change SLITRK3 protein expression patterns on the cell surface, resulting in highly accumulating defective proteins in the Golgi apparatus. By analyzing the development and phenotype of SLITRK3 KO (SLITRK3-/-) mice, the study shows evidence of enhanced susceptibility to pentylenetetrazole-induced seizure with the appearance of spontaneous epileptiform EEG as well as developmental deficits such as higher motor activities and reduced parvalbumin interneurons. Taken together, the results exhibit impaired development of the peripheral and central nervous system and support a conserved role of this transmembrane protein in neurological function. The study delineates an emerging spectrum of human core synaptopathies caused by variants in genes that encode SLITRK proteins and essential regulatory components of the synaptic machinery. The hallmark of these disorders is impaired postsynaptic neurotransmission at nerve terminals; an impaired neurotransmission resulting in a wide array of (often overlapping) clinical features, including neurodevelopmental impairment, weakness, seizures, and abnormal movements. The genetic synaptopathy caused by SLITRK3 mutations highlights the key roles of this gene in human brain development and function.

2.
PLoS Comput Biol ; 19(1): e1010847, 2023 01.
Article En | MEDLINE | ID: mdl-36716346

Mutations in LRRK2 are the most common genetic cause of Parkinson's disease. Despite substantial research efforts, the physiological and pathological role of this multidomain protein remains poorly defined. In this study, we used a systematic approach to construct the general protein-protein interactome around LRRK2, which was then evaluated taking into consideration the differential expression patterns and the co-expression behaviours of the LRRK2 interactors in 15 different healthy tissue types. The LRRK2 interactors exhibited distinct expression features in the brain as compared to the peripheral tissues analysed. Moreover, a high degree of similarity was found for the LRRK2 interactors in putamen, caudate and nucleus accumbens, thus defining a potential LRRK2 functional cluster within the striatum. The general LRRK2 interactome paired with the expression profiles of its members constitutes a powerful tool to generate tissue-specific LRRK2 interactomes. We exemplified the generation of the tissue-specific LRRK2 interactomes and explored the functions highlighted by the "core LRRK2 interactors" in the striatum in comparison with the cerebellum. Finally, we illustrated how the LRRK2 general interactome reported in this manuscript paired with the expression profiles can be used to trace the relationship between LRRK2 and specific interactors of interest, here focusing on the LRRK2 interactors belonging to the Rab protein family.


Corpus Striatum , Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Brain/metabolism , Nucleus Accumbens , Mutation
3.
Neurobiol Dis ; 174: 105858, 2022 Nov.
Article En | MEDLINE | ID: mdl-36096339

Mutations in SPG11, encoding spatacsin, constitute the major cause of autosomal recessive Hereditary Spastic Paraplegia (HSP) with thinning of the corpus callosum. Previous studies showed that spatacsin orchestrates cellular traffic events through the formation of a coat-like complex and its loss of function results in lysosomal and axonal transport impairments. However, the upstream mechanisms that regulate spatacsin trafficking are unknown. Here, using proteomics and CRISPR/Cas9-mediated tagging of endogenous spatacsin, we identified a subset of 14-3-3 proteins as physiological interactors of spatacsin. The interaction is modulated by Protein Kinase A (PKA)-dependent phosphorylation of spatacsin at Ser1955, which initiates spatacsin trafficking from the plasma membrane to the intracellular space. Our study provides novel insight in understanding spatacsin physio-pathological roles with mechanistic dissection of its associated pathways.


14-3-3 Proteins , Spastic Paraplegia, Hereditary , Humans , 14-3-3 Proteins/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Spastic Paraplegia, Hereditary/genetics , Mutation , Corpus Callosum/pathology , Proteins/genetics
4.
iScience ; 24(5): 102484, 2021 May 21.
Article En | MEDLINE | ID: mdl-34113825

The Hereditary Spastic Paraplegias are a group of neurodegenerative diseases characterized by spasticity and weakness in the lower body. Owing to the combination of genetic diversity and variable clinical presentation, the Hereditary Spastic Paraplegias are a strong candidate for protein-protein interaction network analysis as a tool to understand disease mechanism(s) and to aid functional stratification of phenotypes. In this study, experimentally validated human data were used to create a protein-protein interaction network based on the causative genes. Network evaluation as a combination of topological analysis and functional annotation led to the identification of core proteins in putative shared biological processes, such as intracellular transport and vesicle trafficking. The application of machine learning techniques suggested a functional dichotomy linked with distinct sets of clinical presentations, indicating that there is scope to further classify conditions currently described under the same umbrella-term of Hereditary Spastic Paraplegias based on specific molecular mechanisms of disease.

5.
Cell Commun Signal ; 18(1): 92, 2020 06 11.
Article En | MEDLINE | ID: mdl-32527260

BACKGROUND: The past decade has seen the rise of omics data for the understanding of biological systems in health and disease. This wealth of information includes protein-protein interaction (PPI) data derived from both low- and high-throughput assays, which are curated into multiple databases that capture the extent of available information from the peer-reviewed literature. Although these curation efforts are extremely useful, reliably downloading and integrating PPI data from the variety of available repositories is challenging and time consuming. METHODS: We here present a novel user-friendly web-resource called PINOT (Protein Interaction Network Online Tool; available at http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html) to optimise the collection and processing of PPI data from IMEx consortium associated repositories (members and observers) and WormBase, for constructing, respectively, human and Caenorhabditis elegans PPI networks. RESULTS: Users submit a query containing a list of proteins of interest for which PINOT extracts data describing PPIs. At every query submission PPI data are downloaded, merged and quality assessed. Then each PPI is confidence scored based on the number of distinct methods used for interaction detection and the number of publications that report the specific interaction. Examples of how PINOT can be applied are provided to highlight the performance, ease of use and potential utility of this tool. CONCLUSIONS: PINOT is a tool that allows users to survey the curated literature, extracting PPI data in relation to a list of proteins of interest. PINOT extracts a similar numbers of PPIs as other, analogous, tools and incorporates a set of innovative features. PINOT is able to process large queries, it downloads human PPIs live through PSICQUIC and it applies quality control filters on the downloaded PPI data (i.e. removing the need for manual inspection by the user). PINOT provides the user with information on detection methods and publication history for each downloaded interaction data entry and outputs the results in a table format that can be straightforwardly further customised and/or directly uploaded into network visualization software. Video abstract.


Computational Biology , Protein Interaction Mapping/methods , Protein Interaction Maps , Proteins/metabolism , Software , Humans , Internet
...